
ApacheCon NA 2019

Transaction Box

An Apache Traffic Server plugin

Alan M. Carroll, Verizon Media Edge

10 Sep 2019

ApacheCon NA 2019

Transaction Box (“TxnBox”) is a plugin for Apache Traffic Server.

It is intended as a general toolbox for manipulating transactions.

The key design goals are

• YAML configuration.

• Rich set of proxy data access mechanisms.

• Extensive set of transaction manipulators.

• More specialized decision / comparison operators.

• Provide consistency between data for decisions and data for use.

• Easily extensible in syntax and implementation.

Introduction

2

ApacheCon NA 2019

I expect TxnBox to undergo a number of iterations and changes from my original work. For this reason it has been done in a

plugin rather than in the core.

This will enable

• Faster iteration.

• Easier testing and integration efforts.

• Possible to fork and experiment.

• Improvements in the C API.

The current version is sufficiently complete to achieve these, without being so far along change is excessively painful and

expensive.

The implementation is currently starting production testing.

Git repo: https://github.com/SolidWallOfCode/txn_box

Documentation: http://docs.solidwallofcode.com/txn_box

This slide deck: http://docs.solidwallofcode.com/asf/ApacheCon-NA-2019-TxnBox.pdf

3

TxnBox Project

https://github.com/SolidWallOfCode/txn_box

ApacheCon NA 2019

Motivations

From the dark currents of desire

to a light in the darkness

4

ApacheCon NA 2019

Traffic Server performs three fundamental functions -

Proxy
to intermediate between user agents and upstream hosts. Requests and responses can be changed, filtered, or

duplicated.

Cache
for caching content for user agents to reduce burdens on upstream hosts.

Route
to decide to which upstream host to send a request.

The “remap.config” file is concerned primarily with routing, with the other functions added via plugins.

TxnBox is intended to provide a set of features that provide direct integration of proxy functions.

Background

5

ApacheCon NA 2019

This is part of my overall effort to shift the focus of Traffic Server from routing URLs to routing requests. This is an explicit

goal of the Layer 7 Routing project.

In modern CDNs, any part of the request can be part of the routing / modification decisions and Traffic Server should

support that.

6

Request Routing

ApacheCon NA 2019

A perennial complaint is the inability to move text from the host to the URL or vice versa in a remap. E.g. change

“yahoo.mail.com” to “yahoo.com/mail”

or the opposite

“apache.org/trafficserver” to “trafficserver.apache.org”

The need here is twofold –

• Find the text in the header.

• Move that text to a new location.

Current “remap.config” capabilities are quite limited. TxnBox will support this for any part of the header.

URL Manipulation

7

ApacheCon NA 2019

Current “remap.config” limits the regular expression matching, to such an extent that many sites use the “regex_remap”

plugin to compensate.

TxnBox will support applying regular expressions to any part of the HTTP header for either routing or header manipulation.

Regular expression matching

8

ApacheCon NA 2019

• Lack of fine grained access control for rules.

The current ACL support is very limited, and generally can’t handle more than one specification (see issue #1971).

• Lack of access control fail over.

For current “remap.config”, if a rule matches no other rule can match. This makes failing over to an alternative page if

the ACL check fails impossible.

• Limited set of data that can be checked for ACL enablement.

For instance, not able to check values in a client certificate, or cookie tokens.

Access Controls

9

ApacheCon NA 2019

The syntax of “remap.config” and supporting plugins is another chronic pain point.

Obscure and unique syntax which is

• awkward to use and document.

• difficult to automate.

• nearly impossible to extend.

• different for every tool.

• no validation

By using YAML and covering more functionality, TxnBox can ameliorate these issues.

It is a major goal to provide very specific error messages on failure, not just “failed to load remap.config”.

Obscure Syntax

10

ApacheCon NA 2019

Much of what is considered standard request manipulation is actual done via plugins (e.g. “conf_remap”), each of which

tends to have its own configuration and syntax. Other configuration, such as “hosting.config” duplicates the URL

selection of “remap.config” to set transaction properties.

Further, it is frequently necessary to use multiple plugins to perform standard transaction manipulation.

This situation is primarily due to accidents of implementation and the difficulties of extending hand rolled syntax parsers.

TxnBox is intended to provide a framework in which it is easier to extend TxnBox to provide these ancillary uses than to

build from scratch.

11

Consolidation

ApacheCon NA 2019

It is easy to get “remap.config” non-performant, particularly with regular expression matching. This is compounded by the

paucity of matching comparisons, so that common comparisons such as prefix and suffix require regular expressions.

Better syntax, more specialized comparisons for common cases, and static analysis can all contribute to improving

performance without burdening operations staff.

One example is excessive use of regular expressions, which are expensive, in places where more specialized matching

would suffice, such as “prefix” and “suffix” matching of literals.

TxnBox exerts itself to do computation at configuration load as much as possible.

12

Performance

ApacheCon NA 2019

Because of configuration issues, the Traffic Server community examined a number of alternatives and decided to commit to

using YAML as the base configuration syntax for all Traffic Server configuration.

Some previous work was done to upgrade “remap.config” with the same syntax but better internals to fix various

shortcomings.

At the Spring 2019 Summit this was rejected in favor of a complete YAML based overhaul, with the goal of taking full

advantage of YAML to fix the deficiencies of the current configuration.

TxnBox is my proposal for implementing this goal.

YAML

13

ApacheCon NA 2019

Basics

A few powerful mechanisms

combined to yield a flexible

and precise result.

14

ApacheCon NA 2019

To make a decision about a request, the entire transaction is not considered. A specific subset of the data is used. TxnBox

terms this subset a feature. E.g the request URL, an HTTP field value, or a combination of these, or other values.

A feature is created by extracting it from the transaction.

This feature extraction is the fundamental operation in TxnBox.

A primary design goal of TxnBox is to generalize feature extraction.

• Any transaction data, not limited as a single, hardwired feature as in current remapping.

• Additional non-transaction data, such as random numbers or external data sources.

• Use of features anywhere values are used.

Feature Extraction

15

ApacheCon NA 2019

TxnBox uses a format string style for extraction. All features can be extracted as strings.

The general notation is deliberately styled on Python string formatting. Braces are used to delimit extractors with additional

options for style and extended data. These three elements are separated by colons. E.g. for an IP address it might be

“{cssn-remote-addr:S:ap}”

“cssn-remote-addr” is the extractor which retrieves the client IP data. “S” is the format specifier for upper case, and “ap” is

the extended data that indicates extracting the address and port.

Format specifiers are general and apply where possible to all extractors. They follow as closely as possible Python format

specifiers.

Extended data is specific to the extractor, intended for idiosyncratic needs.

In general, TxnBox tries to accept single values where a list is expected as a list of length one.

Notation

16

ApacheCon NA 2019

The format specifier and extended data are useful only in rare circumstances. In addition by far the most common feature

extraction is a single data element from the transaction. Therefore for convenience, unquoted strings are presumed to

be extractors. E.g.

cssn-remote-addr

is an extractor that retrieves the remote IP address of the client session.

Quoted strings can contain extractors if those are delimited by braces, as in the same format string style noted previously.

The string, quoted or not, can be proceeded by the YAML type indicator “!literal” in which case it will be taken as a literal and

no extractors will be found.

!literal “{cssn-remote-addr}”

This is a string with braces in it, it is not an IP address.

Braces can also be escaped by doubling them. The previous string is identical to

“{{cssn-remote-addr}}”

Extractors vs. literals

17

ApacheCon NA 2019

As a special case, if an feature format consists of a single extractor with no additional text, it can be treated as one of the

following types

• String

• Integer

• Boolean

• IP Address

Extractor Types

18

ApacheCon NA 2019

After extracting a feature it can be modified. This is done with a list where the first element is the extraction format and

subsequent elements are objects called modifiers.

[“{creq-url}” , { hash: 4096}]

This extracts the client request URL and then hashes it in to one of 4096 buckets. The feature type is Integer because the

modifier changes the String into an Integer.

It has planned to have a small set of modifiers for specific purposes, among them

• hashing

• URI encode / decode

• IP address processing (see IPSpace on a later slide)

19

Feature Modifiers

ApacheCon NA 2019

A directive is an action to perform.

A comparison is comparing a fixed value to a feature. A comparison matches the feature, or it does not.

Selection is using the result of comparisons on a feature to select one of multiple lists of directives to perform.

This is the mechanism for conditional actions.

Selection

20

ApacheCon NA 2019

A TxnBox configuration is a forest where selection creates the branches and the root of each tree is a hook. An integral part

of the design is that selection is a one-way descent through the trees for each hook.

Once a selection has been made, only the directives selected are performed, all other branches are discarded.

This has its limitations, but I believe it is overall superior because of the lack of ambiguity. If a directive is performed, it is

completely determined which selections occurred to cause that and what other directives were performed.

If no selection matches, the following (not nested) directives are performed.

No Selection Backtracking

21

ApacheCon NA 2019

Comparisons are used to compare a feature to specific values. Most comparisons are string based but there are

comparisons for other types.

Comparisons are done in the same order as in the configuration and are first match.

In a selection, each comparison should also have a “do” keyword to specify the directives selected if the comparison

matches. A missing or empty “do” value means no directive will be invoked and activity on that configuration tree ends.

Comparisons

22

ApacheCon NA 2019

• Numeric comparisons – eq, ne, lt, le, gt, ge, in (range)

• Logic comparisons – or, and, not

• IP address comparisons – eq, ne, in (range / network)

Non-Text comparisons

23

ApacheCon NA 2019

with: creq-host
select:
- match: “special.yahoo.com”
do: # list of directives

- suffix: “yahoo.com”
do: # …

- suffix: “aol.com”
do: # …

24

Selection Example

ApacheCon NA 2019

When a regular expression is used in a comparison that matches, its capture groups become available as features.

The active capture groups can be extracted via numeric indices, e.g. “{0}” for the entire match, “{1}” for the first group, etc.

The format string style lets these be mixed and matched such as “http://{1}/{2}”.

Regular expressions can be applied to a feature directly (not via selection).

This allows easy moving of text between the host and the path, or between any part of the transaction headers.

25

Regular Expressions

ApacheCon NA 2019

Directives that set values (such as setting a field value) use extraction in exactly the same way as selection.

Values

This is a major design goal – there is no distinction between data available for selection and data available for direct use

Because extraction is done with an feature string, mixing literals and multiple extracted features is trivial. In combination

with regular expression support this enables mixing pieces of features (e.g., specific elements of the path in a URL).

Any feature usable for selection can also

be used as a value with the same syntax.

26

ApacheCon NA 2019

The “when” directive is used to specify on which hook other directives are invoked.

The top level of the global configuration of TxnBox requires the use of “when” to contain directives, it is the only one

permitted. This attaches every directive to a specific hook.

“when” is a directive therefore can be used elsewhere. This is useful for situations where actions need to be performed on

more than one hook for the same selection criteria.

TxnBox can be used via remap rules, in which case there is an implicit “when: remap” directive enclosing the configuration.

Hooks

27

ApacheCon NA 2019

IP addresses can be extracted from the transaction.

These can be compared using equality and range checking.

Predefined sets of IP address ranges can be created for use as an IP Space.

• IP Spaces map from an IP address to property sets in an efficient manner.

An IP space is defined by a set of IP address ranges and set of property types, where each range has a property value

for some subset of the property types.

• An IP Space can be used to modify a IP address in to a property value which can then be used for comparison.

IP Addresses

28

ApacheCon NA 2019

Data file, loaded as IP space “josh”:

172.16.1.0-172.16.1.127, prop1=alpha, prop2=beta

192.168.78.0/25, prop1=gamma, prop3=delta

Use:
define-ip-space: [“josh”, “/home/y/conf/josh-ipspace.csv”]

with: [cssn-remote-addr, { ip-space.josh: prop1 }]

select:

- match: “alpha”

do: # …

- match: “beta”

do: #...

IP Space Example

29

ApacheCon NA 2019

The primary point of static analysis is to avoid requiring the user to remember how to optimize. As much as possible this

should be automatic.

For instance, if a regular expression is applied, it can be detected if any of the match groups are used. If not, the match

groups can be discarded immediately.

A selection with a large number of literal strings can be detected and optimized by using a hash map or trie to find the

matching string instead of linear searching.

Static Analysis

30

ApacheCon NA 2019

Examples

For the encouragement of others

31

ApacheCon NA 2019

This was the original issue sparked the original “remap.config” work. The goal is to restrict access to the stats pages to

specific source IP addresses while rendering it “invisible” to other requests.

The current ACL support doesn’t quite work, in particular “failing over” on access denied isn’t possible. With TxnBox it is

simple to select the URL and then do another selection based on the client IP address.

Restrict access to stats page

32

ApacheCon NA 2019

- when: creq

do:

- with: creq-path

select:

- prefix: “/http-status.json”

do:

- with: cssn-remote-addr

select:

- in: [“127.0.0.1/8” , “94.31.20.128/25”]

do:

set-url: “{{http-status}}”

Otherwise without the rewrite it’s a 404.

33

ApacheCon NA 2019

Replace an upstream 403 response with a 204 response when making a request to a set of URLs with a common prefix

(host and path).

The upstream responds with 403 for missing files, but this is not an error for files in a specific subdirectory.

This is a bit more complex than should be required due to issues with the underlying C API. That is being corrected but for

now this is necessary.

Convert 403 responses for missing files.

34

ApacheCon NA 2019

- when: ursp

do:

- with: ursp-status

select:

- eq: 403

do:

- with: creq-host

select:

- match-nocase: "localhost"

do:

- with: creq-path

select:

- prefix: "config/"

do:

- set-ursp-status: 204

- set-ursp-reason: "Config file not present"

- when: prsp

do:

- remove-prsp-field: Content-Type

- remove-prsp-field: Content-Length

- remove-prsp-field: Connection

35

ApacheCon NA 2019

Force requests going upstream to have an “Accept-Encoding”. If not set, set it to “identity”.

when: preq

do:

set-preq-field-default: [Accept-Encoding, identity]

That was simple!

Default “Accept-Encoding” to identity

36

ApacheCon NA 2019

Given a large set of maintained redirections, each having a specific value for the “Host” field which indicates the redirection

should take place, redirect incoming requests.

This demonstrates some of the advantages of YAML and use of the “this” extractor.

It is a situation in which static analysis would yield large benefits.

Redirection list

37

ApacheCon NA 2019

txn_box:

- when: pre-remap

do:

- with: creq-field.host

select:

- match: "redirect.yahoo.com"

do:

- redirect:

location: http://yahoo.com

status: 301

reason: Resource has moved

body: "<HTML><HEAD><TITLE>Resource moved</TITLE></HEAD><BODY><H1>Relocted</H1>The

resource \"{creq-url}\" is now at {this::location}.</BODY>"

38

http://yahoo.com/

ApacheCon NA 2019

defines:

- &redirect-body

status: 301

reason: Resource has moved.

body: "<HTML><HEAD><TITLE>Resource moved</TITLE></HEAD><BODY><H1>Relocted</H1>The resource

\"{creq-url}\" is now at {this::location}.</BODY>"

txn_box:

- when: pre-remap

do:

- with: creq-field.host

select:

- match: "redirect.yahoo.com"

do:

- redirect:

location: http://yahoo.com

<<: *redirect-body

39

ApacheCon NA 2019

A recent issue involved a regular expression which led to a stack explosion crash.

^/alpha/bravo/[?]((?!param=(ichi|ni|san|shi)).)*$

The root problem is the expression wants to match URLs with query strings that do not have the param set to one of a

particular set of values. This is painful for regular expression syntax.

The better solution is enabling “not” at a higher level, such that regular matches what is not wanted and it is the action that

is not taken. E.g., “-v” for grep. But neither “remap.config” nor the “regex_remap” plugin can do that.

Two examples – note the “not” based example makes the result of the regular expression available, since it matched.

PCRE performance

40

ApacheCon NA 2019

when: pre-remap

do:

- with: "{creq-url::pq}"

select:

- regex: “^/alpha/bravo/[?](?:param=(?:ichi:ni:san:shi))”

do: # nothing

- else:

do:

set-url: “staging.example.one”

41

ApacheCon NA 2019

when: pre-remap

do:

- with: "{creq-url-path}?{creq-url-query}"

select:

- not:

regex: “^/alpha/bravo/[?](?:param=(ichi:ni:san:shi))”

do:

set-url “staging.example.one”

42

ApacheCon NA 2019

For some source addresses there is very little beacon data so every beacon should go through. For others, there is plenty of

data so the beacon rate should be reduced.\

This configuration selects based on the user agent IP address and rolls dice on whether to send the beacon request

upstream.

This is still a bit rough, particularly with regard to how to handle beacons that don’t get forwarded. For now this would be

done by hand rolled rules, but in the longer term it should be done via an IP space.

Rate control beacons

43

ApacheCon NA 2019

when: creq

do:

- with: cssn-remote-addr

select:

- in: “1.1.1.0/24”

do:

- with: “{rand::10}”

select:

- ne: 1

respond: [204, “OK”]

- in: “2.2.2.0/24”

do:

- with: “{rand::100}”

select:

- ne: 1

respond: [204, “OK”]

44

ApacheCon NA 2019

when: creq

do:

- with: creq-url-path

select:

- prefix: “/beacon”

do:

with:

- cssn-remote-addr

- ip-space: “beacon”

property: density

select:

- match: medium

do:

- with: “{rand::10}”

select:

- ne: 1

do:

respond: [204, “OK”]

- match: low

do:

- with: “{rand::100}”

select:

- ne: 1

do:

respond: [204, “OK”]

45

ApacheCon NA 2019

Open Issues

Can I hear a Pull Request?!!?

46

ApacheCon NA 2019

The names for extractors are quite arbitrary. The best naming convention is still debatable.

For instance it would be easy to tweak the syntax to move elements from the extension to the name, e.g. “{creq-

field::name}” to “{creq-field-name}”. Or “{creq.field.name}”. Or even “{creq-field.name}”.

How verbose and specific should the names by? E.g. “creq-url-query” vs. “creq-query”. Is the latter sufficientl unambiguous?

Extractor Names

47

ApacheCon NA 2019

Basic unit is seconds – durations are in this unit unless specifically noted otherwise.

Nomenclature

• “ns”, “us”, “ms”, “s”, “Ks”, “Ms”, “Gs” – subsecond are lower case, multisecond is upper case

• “minute”, “hour”, “week”, “year” maybe.

Setting duration unit

• Extractor extension – cache-ttl::ms

• YAML type tag – !ms 100

Unfortunately need two types – one for embedded extractors in strings and another for literals.

cache-ttl::ms is the same as !ms cache-ttl

48

Duration

ApacheCon NA 2019

It is necessary to have an “always match” comparison for various reasons. What is a good name?

• “else”

• “otherwise”

• “always”

• “anything”

• “whatever”

Always match

49

ApacheCon NA 2019

Should regular expressions be marked by the name of the directive?

match-regex: “http://(?:.*)[.]com”

Or by a YAML type indicator?

match: !rxp “http://(?:.*)[.]com”

Both are roughly the same amount of typing.

The downside of the directive style is every directive that does matching must provide multiple versions.

The downside of the type indicator is obscure syntax, although it is in fact standard YAML.

Case sensitive vs. caseless comparisons have the same issue.

Should the type be similar to PCRE flags, e.g. a combination of letters indicating the comparison style?

• Regular expression

• Case insensitive

Regular expression notation

50

http://(/?:.*)%5b.%5dcom

ApacheCon NA 2019

Having considered nested extractions – where the extractor name is itself extracted – I have decided to not pursue

implementation for several reasons.

It makes static analysis very difficult to impossible.

The use and syntax is complex.

The uses cases are extremely obscure, I consider it unlikely an actual user would ever think of doing such things.

Nested Extraction

51

ApacheCon NA 2019

Future

I have such sights to show you…

52

ApacheCon NA 2019

There is some documentation but extending and improving it is a major work item for the rest of the year.

Documentation is a mix of Sphinx based user oriented information and Doxygen based developer reference.

A preliminary but out of date version is at http://docs.solidwallofcode.com/txn_box

This is primarily due to the continual refactoring during development. Once that becomes more firm the documentation

will be updated.

53

Documentation

http://docs.solidwallofcode.com/txn_box

ApacheCon NA 2019

Other extractors that should be provided

• Session data.

• TLS data.

• Random number generator.

• Cookies.

• Stats / counters.

• Transaction and session arguments.

• Explicit application of regular expressions, substitution.

May want to look at making other data available via key/value pairs, such as being able to decorate a parent selection so

that the values can be extracted by key.

Extractors

54

ApacheCon NA 2019

Variables will be available to support per transaction storage.

Most use cases for the “@ headers” can be replaced by use of TxnBox variables which will be more efficient and flexible.

These can also be used in some cases to replace the C API transaction variables.

Anything that be extracted can be stored in a variable, and retrieving the value is done via extraction.

Variables

55

ApacheCon NA 2019

Feature modifiers were added primarily to support A/B style testing. The concept is a feature is extracted, hashed, and then

the hash value used to determine if the request goes to bucket A or B.

with: [“{creq-url}”, { hash: 4096 }]

select:

- eq: 0

do:

set-preq-host: “test.upstream.place”

This would extract the URL, hash it, and if 1 in 4096 send it to the test upstream.

A/B Testing

56

ApacheCon NA 2019

Currently regular expressions must be configuration load time literals. It is planned to make this more flexible by allowing

the use of features in the regular expressions.

There are performance concerns here, because literal regular expressions allow computing various limits at configuration

load time, and also pre-compiling the regular expressions.

Dynamic regular expressions

57

ApacheCon NA 2019

TxnBox is designed to interact easily with the planned Layer 7 Routing work. One of the issues there was how to specify the

upstream selection strategy. This would be trivial with TxnBox by having a directive to set it. Then the L7R code would

need no strategy specification support at all.

L7R Project

58

ApacheCon NA 2019

The current design is a directive that specifies the dynamic library and function name, along with a set of string arguments.

The function interface is a context object, along with a pointer to string view objects and a count.

By specifying the function name the function selection can be done by TxnBox rather than dispatch logic in the other plugin.

Information needed by the other plugin can be gathered by TxnBox via extractors and passed in the function interface.

A goal of this design is enable additional extension flexibility. In effect arbitrary C functions can be called from with TxnBox,

extending its capabilities. Data can be passed back via the context object.

Calling other plugins

59

ApacheCon NA 2019

Conditional / default strings – currently considering using the syntax “{| … | … |}” to indicate conditional extraction.

For example, “{| A | B | C |}” would mean

• If “A” is not the empty string, use A.

• Else if “B” is not the empty string, use B.

• Else if “C” is not the empty string, use C.

• Empty string

This makes defaults easy, because a literal is never empty – “{|{creq.field::YRIP}|N/A|}”.

Conditional extraction string syntax

60

ApacheCon NA 2019 ApacheCon NA 2019 61

ApacheCon NA 2019

Design Notes

62

ApacheCon NA 2019

Varnish is much more procedural – Traffic Server operates more autonomously and therefore requires only tweaks, not

instruction. The general flavor of Traffic Server plugins is setting values far more than performing actions compared to

Varnish.

A significant difference is the use of “if” vs. selection, although these are logically equivalent.

Selection is cleaner, faster, and more compact for a single feature being compared to multiple values. It avoids repeating

the feature string and the inevitable typographic errors.

On the other hand, if different features are sequentially compared, “if” is better. The “no backtracking” rule makes the

behavior of consecutive checks different, and this case it is selection that requires excess verbosity in the

configuration.

The “when” directive functions are similar to reserved “vcl_” function names, although it is easier to have multiple uses of a

particular HTTP state.

Extractors are similar to VCL objects.

Comparing to Varnish

63

ApacheCon NA 2019

TxnBox is structured to ease the work of local extensions.

All of the primary entities (directives, comparisons, extractors) are defined by code

during initialization using generic mechanisms. This means additional ones can be

added in additional source files without modifying the existing code. A fork with

additional entities is thereby made low maintenance – patching consists of adding

entire files and rebuilding.

TxnBox Extensions

64

ApacheCon NA 2019

A fundamental requirement was for the configuration to be in YAML.

For this reason, as much as possible, specialized syntax was avoided even where it would be more compact or more

understandable.

While human usability is important, it also considered important to support external tools working with the configuration. The

more that is in YAML the easier this can be done and consistency itself improves human comprehension.

In addition, even for humans, structure in YAML can be described by a schema which in turn can be used by editors to make

editing the files easier and less error prone.

YAML

65

ApacheCon NA 2019

A benefit that emerged during the work was the ability to do static analysis on the configuration, even during configuration

loading. This enables run time optimizations rather than cautiously conservative coding. The implementation doesn’t

have to assume the worst case for handling data, it can instead actually look and see if that case occurs and optimize

accordingly.

This is used for extraction. If the format is literal then it can be stored statically in the configuration. Extracted strings can

be stored in a temporary area if not used again, and copied to context storage otherwise.

Static Analysis

66

ApacheCon NA 2019

A longer term goal is to enable offline static analysis. A recurrent performance issue currently is mixing literal strings and

regular expressions when matching URLs.

An offline analysis could match the literal strings against the regular expressions so that the literal strings could either be

moved before the regular expression without changing the results, or eliminating literal strings that are never matched

because a prior regular expression matches the same string.

Static Analysis

67

ApacheCon NA 2019

The naming convention was changed recently so that arguments can be directly attached to the directive or extractor name.

The primary impetus was perceived ease of use. I think it makes the use more natural, closer to standard assignment. It also

makes it easier to support non-quoted singleton extractors (which would be noticeably worse if the extension field was

used).

The drawback is the argument cannot be extracted. Whether this is a real problem is unclear. It’s a rather obscure feature

and can be easily worked around in most cases.

If that becomes neccessary I will add some sort of “apply” mechanism for this, which would be more general.

Naming and attached arguments

68

ApacheCon NA 2019

In working with use cases, the need for lists becomes clear. For example, how should mutli-valued fields be modeled?

This has two issues

• the internal representation

• the syntax for manipulating lists

69

The Problem of Lists

ApacheCon NA 2019

Currently there are three mechanisms which are undergoing testing and experimentation.

• Tuple support – an array of Features.

• Cons cells – the standard Lisp cons cell.

A key point which makes this more challenging is avoiding standard memory allocation, which is a key design element. If at

all possible, the data should be stored entirely in the transaction memory arena. This is somewhat tricky for incremental

parsers.

This is where a cons cell shines – it interacts naturally with a memory arena and incremental parsing. In general, lists are

almost always going to be iterated, and there’s no current support for indexing. Internally, the parsing logic could use a Cons

style during parsing and construct a Tuple from the Cons after (which would be fast and inexpensive).

70

List Internal Representation

ApacheCon NA 2019

In general the planned mechanism for list manipulation will be feature modifiers. Among these would be

• prepend, append – adding elements or lists to an existing list.

• prefix, suffix – retain only the initial or final elements of a list.

• drop – remove elements from the start or end of a list (dual of prefix/suffix).

• flatten – if extractors can return lists then lists of lists become possible.

• replace – standard substitution – if a list element matches, it is replaced.

• split, join – break a string in to a list, and convert a list to a string.

71

List Manipulation

ApacheCon NA 2019

Are arithmetic operations useful? Initially some useful ones will be provide by feature modifiers, such as

• clip: [min, max] – force the value to be in the range min to max inclusive. If min or max is NULL then do not clip

on that side. E.g. clip: [NULL, max] means change the value to be at most max.

For generic operations, a potential syntax would be basically a syntax tree in YAML. E.g. “alpha + bravo – charlie” would be

minus:
- plus:
- var.alpha
- var.beta

- var.charlie

72

Arithmetic Operations

ApacheCon NA 2019

Handling “or” situations is easy – the values can be selected on in order while using YAML anchor / reference to duplicate

the directives.

Multiple conditions on the same feature is also easy.

What is challenging is something that is straight forward in VCL, which is the logical “and” on two different features.

Because of no backtracking, satisfying the first condition prevents “failing out” of the second condition.

In most use cases considered, this can be worked around.

To handle the more difficult cases there is support for tuple selection. An n-tuple of features is extracted and then n-tuples

of comparisons are applied with the requirement all comparisons must match

Tuple Selection

73

